Results of Surface Water Conservation Strategies

John Boyer, CDM Smith

Agenda Item 8

Review of Surface Water Scenarios

Base Scenarios

- Current Surface Water Use Scenario
 - Uses most recent 10-yr average withdrawals (as reported by month)
- Permitted and Registered (P&R) Surface Water Use Scenario
 - Uses current fully-permitted and registered amounts
- Moderate Water Demand Projection Scenario to year 2070
 - Future water demand projection based on moderate growth and normal climate

High Water Demand Projection Scenario to year 2070

• Future water demand projection based on high growth and hot/dry climate

Additional Scenarios

- Unimpaired Flow (UIF) Scenario
 - Naturalized conditions (no surface water withdrawals, discharges, or reservoirs)

Projected, NEW Agricultural Demands

2070 High Demand Scenario

HUC 10 Outlet

HUC 10s without values are assumed to have no additional Ag demand

2070 High Demand Scenario

Physical Shortage

Surface Water Shortage Table

Map ID	Water User	Max Shortage (MGD)	Frequency of Shortage
1	IN: Sonoco	21.0	1.3%
2	IR: O'Tuel	0.3	0.4%
3	IR: Atkinson	0.05	1.2%
4	GC: Florence	0.1	0.3%
5	GC: White Plains	0.1	8.2%
6	MI: Hanson (Jefferson)	0.1	7.1%
7	MI: Martin Marrietta	1.1	1.3%

Approach to Evaluate Conservation (Demand-Side) Strategies

- 1. Make reasonable assumptions about potential percent reductions in surface water demand, by sector
- 2. Apply those assumptions to the **High Demand 2070 Scenario**, and evaluate the changes in streamflow at select, Strategic Nodes

Conservation Scenarios

- 1. Agricultural demand reduction (10%)
- 2. Municipal demand reductions for surface water users only
 - a. 10% reduction
 - b. 15% reduction
 - c. 20% reduction
- 3. Municipal demand reductions for both surface water and groundwater users
 - a. 10% reduction
 - b. 15% reduction
 - c. 20% reduction
- 4. Industrial demand reduction (5%) for surface and groundwater users (not mining)
- 5. Agricultural, municipal, and industrial demand reductions combined (Scenarios 1, 3a, and 4).

										R ARCHADO
Performance	2070 High Demand	1	2a	2b	2c	3a	3b	3с	4	5
Measures	Scenario Great Pee Dee River below Little Pee Dee Confluence (flow in cfs)									
Minimum Flow	1,547	1,548	1,548	1,549	1,550	1,546	1,546	1,546	1,550	1,551
5th Percentile Flow	3,464	3,464	3,465	3,466	3,466	3,463	3,462	3,462	3,467	3,467
Mean flow	14,450	14,451	14,451	14,452	14,452	14,449	14,449	14,448	14,454	14,453
Performance Measures	Great Pee Dee River below Little Pee Dee Confluence (% change from 2070 High Demand Scenario)									
Minimum Flow		0.1%	0.1%	0.2%	0.2%	0.0%	0.0%	0.0%	0.2%	0.3%
5th Percentile Flow		0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%
Mean flow		0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

Demand-Side Scenario Simulated Flows at the Great Pee Dee/Little Pee Dee Confluence

Little Poe Doe

Swamp

Brown Swiamp IR: McDonald

GREAT PEE DEE/LITTLE

PEE CONFLUENCE

Tidal Acea (Not Modeled)

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

GREAT PEE DEE/LITTLE PEE DEE CONFLUENCE

	Minimum Flow (cfs)	% Change
2070 High Demand	1,547	
Scenario 1 (Ag Red. 10%)	1,548	0.1%
Scenario 2a (Municipal SW Red. 10%)	1,548	0.1%
Scenario 2b (Municipal SW Red. 15%)	1,549	0.2%
Scenario 2c (Municipal SW Red. 20%)	1,550	0.2%
Scenario 3a (Municipal SW and GW Red. 10%)	1,546	0.0%
Scenario 3b (Municipal SW and GW Red. 15%)	1,546	0.0%
Scenario 3c (Municipal SW and GW Red. 20%)	1,546	0.0%
Scenario 4 (Industrial Red. 5%)	1,550	0.2%
Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial Red. 5%)	1,551	0.3%

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

PDE15				
	Minimum Flow (cfs)	% Change		
2070 High Demand	928			
Scenario 1 (Ag Red. 10%)	929	0.1%		
Scenario 2a (Municipal SW Red. 10%)	932	0.4%		
Scenario 2b (Municipal SW Red. 15%)	934	0.7%		
Scenario 2c (Municipal SW Red. 20%)	936	0.9%	_	
Scenario 3a (Municipal SW and GW Red. 10%)	931	0.4%		
Scenario 3b (Municipal SW and GW Red. 15%)	933	0.6%		
Scenario 3c (Municipal SW and GW Red. 20%)	935	0.8%		
Scenario 4 (Industrial Red. 5%)	939	1.3%		
Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial Red. 5%)	944	1.8%		

DEE DEE DIVED DELOW DEE DEE

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

LITTLE PEE DEE RIVER AT GALIVANTS FERRY

PDE28		
	Minimum Flow (cfs)	% Change
2070 High Demand	198	
Scenario 1 (Ag Red. 10%)	198	0.0%
Scenario 2a (Municipal SW Red. 10%)	198	0.0%
Scenario 2b (Municipal SW Red. 15%)	198	0.0%
Scenario 2c (Municipal SW Red. 20%)	198	0.0%
Scenario 3a (Municipal SW and GW Red. 10%)	197	-0.3%
Scenario 3b (Municipal SW and GW Red. 15%)	197	-0.4%
Scenario 3c (Municipal SW and GW Red. 20%)	197	-0.5%
Scenario 4 (Industrial Red. 5%)	198	0.0%
Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial Red. 5%)	197	-0.3%

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

BLACK CREEK NEAR QUINBY PDE13 Minimum % Change Flow (cfs) 2070 High Demand 53 54 0.5% Scenario 1 (Ag Red. 10%) Scenario 2a (Municipal SW Red. 10%) 53 -0.5% Scenario 2b (Municipal SW Red. 15%) 53 -0.7% 53 -0.9% Scenario 2c (Municipal SW Red. 20%) Scenario 3a (Municipal SW and GW 53 -1.1% Red. 10%) Scenario 3b (Municipal SW and GW 52 -1.7% Red. 15%) Scenario 3c (Municipal SW and GW 52 -2.2% Red. 20%) 53 0.0% Scenario 4 (Industrial Red. 5%) Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial 53 -0.6% Red. 5%)

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

LYNCHES RIVER AT EFFINGHAM PDE05 Minimum % Change Flow (cfs) 2070 High Demand 71 71 0.1% Scenario 1 (Ag Red. 10%) Scenario 2a (Municipal SW Red. 10%) 71 0.0% Scenario 2b (Municipal SW Red. 15%) 71 0.0% 71 0.0% Scenario 2c (Municipal SW Red. 20%) Scenario 3a (Municipal SW and GW 70 -0.6% Red. 10%) Scenario 3b (Municipal SW and GW 70 -0.8% Red. 15%) Scenario 3c (Municipal SW and GW 70 -1.1% Red. 20%) 71 -0.1% Scenario 4 (Industrial Red. 5%) Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial 71 -0.5% Red. 5%)

The table shows the minimum flow and percent change from **2070 HD Scenario** minimum flows for each demand-side scenario

BLACK RIVER AT KINGSTREE PDE26 Minimum % Change Flow (cfs) 2070 High Demand 47 1.1% Scenario 1 (Ag Red. 10%) 48 Scenario 2a (Municipal SW Red. 10%) 47 0.0% Scenario 2b (Municipal SW Red. 15%) 47 0.0% 47 0.0% Scenario 2c (Municipal SW Red. 20%) Scenario 3a (Municipal SW and GW 45 -5.4% Red. 10%) Scenario 3b (Municipal SW and GW 43 -8.1% Red. 15%) Scenario 3c (Municipal SW and GW 42 -10.8% Red. 20%) 47 -0.1% Scenario 4 (Industrial Red. 5%) Scenario 5 (Ag Red. 10%, Municipal SW and GW Red. 10%, and Industrial -4.4% 45 Red. 5%)

Summary

- The demand-side conservation strategies result in minimal impact to low flows conditions when compared to the 2070 High Demand scenario.
- Impacts to flows were generally the largest under Scenario 5 (conservation for agricultural, municipal, and industrial water users).
- At several locations, minimum flows decrease due to a reduction in groundwater withdrawals, and the associated decrease in treated wastewater being returned to surface water upstream.

Benefits of Water Conservation and Efficiency

- Reduce costs of water for irrigation and possibly improve crop yields
- Lower costs of water for homeowners and reduce or delay a municipality's need to develop more water supplies
- Conservation in groundwater dependent communities may be important for sustaining groundwater supplies
- Can help extend supplies for users on small/headwater tributaries and mitigate impact of drought

Chapter 5 (Surface Water Only)

Agenda Item 9

Chapter 5 Outline (surface water portion only)

- 5.1 Methodology
 - 5.1.1 Surface Water
- 5.2 Performance Measures
 - 5.2.1 Surface Water Performance Measures
- 5.3 Scenario Descriptions and Surface Water Simulation Result
 - 5.3.1 5.3.5 Current Use, P&R, Moderate Demand, High Demand, UIF
 - 5.3.6 Comparison of Low Flows
 - 5.3.7 Application of Biological Response Metrics
- 5.5 Summary